Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Case-Factor Diagrams for Structured Probabilistic Modeling (1207.4135v1)

Published 11 Jul 2012 in cs.AI

Abstract: We introduce a probabilistic formalism subsuming Markov random fields of bounded tree width and probabilistic context free grammars. Our models are based on a representation of Boolean formulas that we call case-factor diagrams (CFDs). CFDs are similar to binary decision diagrams (BDDs) but are concise for circuits of bounded tree width (unlike BDDs) and can concisely represent the set of parse trees over a given string undera given context free grammar (also unlike BDDs). A probabilistic model consists of aCFD defining a feasible set of Boolean assignments and a weight (or cost) for each individual Boolean variable. We give an insideoutside algorithm for simultaneously computing the marginal of each Boolean variable, and a Viterbi algorithm for finding the mininum cost variable assignment. Both algorithms run in time proportional to the size of the CFD.

Citations (69)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.