Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Computing Nash Equilibria of Action-Graph Games (1207.4128v1)

Published 11 Jul 2012 in cs.GT

Abstract: Action-graph games (AGGs) are a fully expressive game representation which can compactly express both strict and context-specific independence between players' utility functions. Actions are represented as nodes in a graph G, and the payoff to an agent who chose the action s depends only on the numbers of other agents who chose actions connected to s. We present algorithms for computing both symmetric and arbitrary equilibria of AGGs using a continuation method. We analyze the worst-case cost of computing the Jacobian of the payoff function, the exponential-time bottleneck step, and in all cases achieve exponential speedup. When the indegree of G is bounded by a constant and the game is symmetric, the Jacobian can be computed in polynomial time.

Citations (79)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube