Computing Nash Equilibria of Action-Graph Games (1207.4128v1)
Abstract: Action-graph games (AGGs) are a fully expressive game representation which can compactly express both strict and context-specific independence between players' utility functions. Actions are represented as nodes in a graph G, and the payoff to an agent who chose the action s depends only on the numbers of other agents who chose actions connected to s. We present algorithms for computing both symmetric and arbitrary equilibria of AGGs using a continuation method. We analyze the worst-case cost of computing the Jacobian of the payoff function, the exponential-time bottleneck step, and in all cases achieve exponential speedup. When the indegree of G is bounded by a constant and the game is symmetric, the Jacobian can be computed in polynomial time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.