Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Computing Nash Equilibria of Action-Graph Games (1207.4128v1)

Published 11 Jul 2012 in cs.GT

Abstract: Action-graph games (AGGs) are a fully expressive game representation which can compactly express both strict and context-specific independence between players' utility functions. Actions are represented as nodes in a graph G, and the payoff to an agent who chose the action s depends only on the numbers of other agents who chose actions connected to s. We present algorithms for computing both symmetric and arbitrary equilibria of AGGs using a continuation method. We analyze the worst-case cost of computing the Jacobian of the payoff function, the exponential-time bottleneck step, and in all cases achieve exponential speedup. When the indegree of G is bounded by a constant and the game is symmetric, the Jacobian can be computed in polynomial time.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.