Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 74 tok/s
Gemini 2.5 Flash 163 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Time and Space Efficient Algorithm for Contextual Linear Bandits (1207.3024v4)

Published 12 Jul 2012 in cs.DS and cs.GT

Abstract: We consider a multi-armed bandit problem where payoffs are a linear function of an observed stochastic contextual variable. In the scenario where there exists a gap between optimal and suboptimal rewards, several algorithms have been proposed that achieve $O(\log T)$ regret after $T$ time steps. However, proposed methods either have a computation complexity per iteration that scales linearly with $T$ or achieve regrets that grow linearly with the number of contexts $|\myset{X}|$. We propose an $\epsilon$-greedy type of algorithm that solves both limitations. In particular, when contexts are variables in $\realsd$, we prove that our algorithm has a constant computation complexity per iteration of $O(poly(d))$ and can achieve a regret of $O(poly(d) \log T)$ even when $|\myset{X}| = \Omega (2d) $. In addition, unlike previous algorithms, its space complexity scales like $O(Kd2)$ and does not grow with $T$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.