Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal rates for first-order stochastic convex optimization under Tsybakov noise condition (1207.3012v2)

Published 12 Jul 2012 in cs.LG and stat.ML

Abstract: We focus on the problem of minimizing a convex function $f$ over a convex set $S$ given $T$ queries to a stochastic first order oracle. We argue that the complexity of convex minimization is only determined by the rate of growth of the function around its minimizer $x*_{f,S}$, as quantified by a Tsybakov-like noise condition. Specifically, we prove that if $f$ grows at least as fast as $|x-x*_{f,S}|\kappa$ around its minimum, for some $\kappa > 1$, then the optimal rate of learning $f(x*_{f,S})$ is $\Theta(T{-\frac{\kappa}{2\kappa-2}})$. The classic rate $\Theta(1/\sqrt T)$ for convex functions and $\Theta(1/T)$ for strongly convex functions are special cases of our result for $\kappa \rightarrow \infty$ and $\kappa=2$, and even faster rates are attained for $\kappa <2$. We also derive tight bounds for the complexity of learning $x_{f,S}*$, where the optimal rate is $\Theta(T{-\frac{1}{2\kappa-2}})$. Interestingly, these precise rates for convex optimization also characterize the complexity of active learning and our results further strengthen the connections between the two fields, both of which rely on feedback-driven queries.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.