Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Prediction of DNA-Binding Proteins Using Machine Learning (1207.2600v1)

Published 11 Jul 2012 in cs.CV and q-bio.QM

Abstract: DNA-binding proteins are a class of proteins which have a specific or general affinity to DNA and include three important components: transcription factors; nucleases, and histones. DNA-binding proteins also perform important roles in many types of cellular activities. In this paper we describe machine learning systems for the prediction of DNA- binding proteins where a Support Vector Machine and a Cascade Correlation Neural Network are optimized and then compared to determine the learning algorithm that achieves the best prediction performance. The information used for classification is derived from characteristics that include overall charge, patch size and amino acids composition. In total 121 DNA- binding proteins and 238 non-binding proteins are used to build and evaluate the system. For SVM using the ANOVA Kernel with Jack-knife evaluation, an accuracy of 86.7% has been achieved with 91.1% for sensitivity and 85.3% for specificity. For CCNN optimized over the entire dataset with Jack knife evaluation we report an accuracy of 75.4%, while the values of specificity and sensitivity achieved were 72.3% and 82.6%, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube