Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Optimal Euclidean spanners: really short, thin and lanky (1207.1831v4)

Published 7 Jul 2012 in cs.DS

Abstract: In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean $(1+\eps)$-spanners that achieves constant degree, diameter $O(\log n)$, and weight $O(\log2 n) \cdot \omega(MST)$, and has running time $O(n \cdot \log n)$. This construction applies to $n$-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight $O(\log n) \cdot \omega(MST)$. Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.