Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Transformational Characterization of Markov Equivalence for Directed Acyclic Graphs with Latent Variables (1207.1419v1)

Published 4 Jul 2012 in cs.AI and stat.ME

Abstract: Different directed acyclic graphs (DAGs) may be Markov equivalent in the sense that they entail the same conditional independence relations among the observed variables. Chickering (1995) provided a transformational characterization of Markov equivalence for DAGs (with no latent variables), which is useful in deriving properties shared by Markov equivalent DAGs, and, with certain generalization, is needed to prove the asymptotic correctness of a search procedure over Markov equivalence classes, known as the GES algorithm. For DAG models with latent variables, maximal ancestral graphs (MAGs) provide a neat representation that facilitates model search. However, no transformational characterization -- analogous to Chickering's -- of Markov equivalent MAGs is yet available. This paper establishes such a characterization for directed MAGs, which we expect will have similar uses as it does for DAGs.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube