Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Planning in POMDPs Using Multiplicity Automata (1207.1388v1)

Published 4 Jul 2012 in cs.AI and cs.FL

Abstract: Planning and learning in Partially Observable MDPs (POMDPs) are among the most challenging tasks in both the AI and Operation Research communities. Although solutions to these problems are intractable in general, there might be special cases, such as structured POMDPs, which can be solved efficiently. A natural and possibly efficient way to represent a POMDP is through the predictive state representation (PSR) - a representation which recently has been receiving increasing attention. In this work, we relate POMDPs to multiplicity automata- showing that POMDPs can be represented by multiplicity automata with no increase in the representation size. Furthermore, we show that the size of the multiplicity automaton is equal to the rank of the predictive state representation. Therefore, we relate both the predictive state representation and POMDPs to the well-founded multiplicity automata literature. Based on the multiplicity automata representation, we provide a planning algorithm which is exponential only in the multiplicity automata rank rather than the number of states of the POMDP. As a result, whenever the predictive state representation is logarithmic in the standard POMDP representation, our planning algorithm is efficient.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.