Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes (1207.1140v1)

Published 4 Jul 2012 in cs.IT, math.CO, math.IT, and math.PR

Abstract: We prove that a random linear code over F_q, with probability arbitrarily close to 1, is list decodable at radius (1-1/q-\epsilon) with list size L=O(1/\epsilon2) and rate R=\Omega_q(\epsilon2/(log3(1/\epsilon))). Up to the polylogarithmic factor in (1/\epsilon) and constant factors depending on q, this matches the lower bound L=\Omega_q(1/\epsilon2) for the list size and upper bound R=O_q(\epsilon2) for the rate. Previously only existence (and not abundance) of such codes was known for the special case q=2 (Guruswami, H{\aa}stad, Sudan and Zuckerman, 2002). In order to obtain our result, we employ a relaxed version of the well known Johnson bound on list decoding that translates the average Hamming distance between codewords to list decoding guarantees. We furthermore prove that the desired average-distance guarantees hold for a code provided that a natural complex matrix encoding the codewords satisfies the Restricted Isometry Property with respect to the Euclidean norm (RIP-2). For the case of random binary linear codes, this matrix coincides with a random submatrix of the Hadamard-Walsh transform matrix that is well studied in the compressed sensing literature. Finally, we improve the analysis of Rudelson and Vershynin (2008) on the number of random frequency samples required for exact reconstruction of k-sparse signals of length N. Specifically, we improve the number of samples from O(k log(N) log2(k) (log k + loglog N)) to O(k log(N) log3(k)). The proof involves bounding the expected supremum of a related Gaussian process by using an improved analysis of the metric defined by the process. This improvement is crucial for our application in list decoding.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube