Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs (1207.0953v2)

Published 4 Jul 2012 in cs.DM

Abstract: Let G=(V,E) be a graph. A vertex dominates itself and all its neighbors, i.e., every vertex v in V dominates its closed neighborhood N[v]. A vertex set D in G is an efficient dominating (e.d.) set for G if for every vertex v in V, there is exactly one d in D dominating v. An edge set M is an efficient edge dominating (e.e.d.) set for G if it is an efficient dominating set in the line graph L(G) of G. The ED problem (EED problem, respectively) asks for the existence of an e.d. set (e.e.d. set, respectively) in the given graph. We give a unified framework for investigating the complexity of these problems on various classes of graphs. In particular, we solve some open problems and give linear time algorithms for ED and EED on dually chordal graphs. We extend the two problems to hypergraphs and show that ED remains NP-complete on alpha-acyclic hypergraphs, and is solvable in polynomial time on hypertrees, while EED is polynomial on alpha-acyclic hypergraphs and NP-complete on hypertrees.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.