Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Subspace System Identification via Weighted Nuclear Norm Optimization (1207.0023v1)

Published 29 Jun 2012 in cs.SY

Abstract: We present a subspace system identification method based on weighted nuclear norm approximation. The weight matrices used in the nuclear norm minimization are the same weights as used in standard subspace identification methods. We show that the inclusion of the weights improves the performance in terms of fit on validation data. As a second benefit, the weights reduce the size of the optimization problems that need to be solved. Experimental results from randomly generated examples as well as from the Daisy benchmark collection are reported. The key to an efficient implementation is the use of the alternating direction method of multipliers to solve the optimization problem.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.