Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Belief Update in CLG Bayesian Networks With Lazy Propagation (1206.6854v1)

Published 27 Jun 2012 in cs.AI

Abstract: In recent years Bayesian networks (BNs) with a mixture of continuous and discrete variables have received an increasing level of attention. We present an architecture for exact belief update in Conditional Linear Gaussian BNs (CLG BNs). The architecture is an extension of lazy propagation using operations of Lauritzen & Jensen [6] and Cowell [2]. By decomposing clique and separator potentials into sets of factors, the proposed architecture takes advantage of independence and irrelevance properties induced by the structure of the graph and the evidence. The resulting benefits are illustrated by examples. Results of a preliminary empirical performance evaluation indicate a significant potential of the proposed architecture.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube