Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering (1206.6832v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: We present a new approach to learning the structure and parameters of a Bayesian network based on regularized estimation in an exponential family representation. Here we show that, given a fixed variable order, the optimal structure and parameters can be learned efficiently, even without restricting the size of the parent sets. We then consider the problem of optimizing the variable order for a given set of features. This is still a computationally hard problem, but we present a convex relaxation that yields an optimal 'soft' ordering in polynomial time. One novel aspect of the approach is that we do not perform a discrete search over DAG structures, nor over variable orders, but instead solve a continuous relaxation that can then be rounded to obtain a valid network structure. We conduct an experimental comparison against standard structure search procedures over standard objectives, which cope with local minima, and evaluate the advantages of using convex relaxations that reduce the effects of local minima.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.