Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cross Language Text Classification via Subspace Co-Regularized Multi-View Learning (1206.6481v1)

Published 27 Jun 2012 in cs.CL, cs.IR, and cs.LG

Abstract: In many multilingual text classification problems, the documents in different languages often share the same set of categories. To reduce the labeling cost of training a classification model for each individual language, it is important to transfer the label knowledge gained from one language to another language by conducting cross language classification. In this paper we develop a novel subspace co-regularized multi-view learning method for cross language text classification. This method is built on parallel corpora produced by machine translation. It jointly minimizes the training error of each classifier in each language while penalizing the distance between the subspace representations of parallel documents. Our empirical study on a large set of cross language text classification tasks shows the proposed method consistently outperforms a number of inductive methods, domain adaptation methods, and multi-view learning methods.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)