Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Latent Structure From Mixed Real and Categorical Relational Data (1206.6469v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: We consider analysis of relational data (a matrix), in which the rows correspond to subjects (e.g., people) and the columns correspond to attributes. The elements of the matrix may be a mix of real and categorical. Each subject and attribute is characterized by a latent binary feature vector, and an inferred matrix maps each row-column pair of binary feature vectors to an observed matrix element. The latent binary features of the rows are modeled via a multivariate Gaussian distribution with low-rank covariance matrix, and the Gaussian random variables are mapped to latent binary features via a probit link. The same type construction is applied jointly to the columns. The model infers latent, low-dimensional binary features associated with each row and each column, as well correlation structure between all rows and between all columns.

Citations (11)

Summary

We haven't generated a summary for this paper yet.