Inferring Latent Structure From Mixed Real and Categorical Relational Data (1206.6469v1)
Abstract: We consider analysis of relational data (a matrix), in which the rows correspond to subjects (e.g., people) and the columns correspond to attributes. The elements of the matrix may be a mix of real and categorical. Each subject and attribute is characterized by a latent binary feature vector, and an inferred matrix maps each row-column pair of binary feature vectors to an observed matrix element. The latent binary features of the rows are modeled via a multivariate Gaussian distribution with low-rank covariance matrix, and the Gaussian random variables are mapped to latent binary features via a probit link. The same type construction is applied jointly to the columns. The model infers latent, low-dimensional binary features associated with each row and each column, as well correlation structure between all rows and between all columns.