Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Batch Active Learning via Coordinated Matching (1206.6458v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: Most prior work on active learning of classifiers has focused on sequentially selecting one unlabeled example at a time to be labeled in order to reduce the overall labeling effort. In many scenarios, however, it is desirable to label an entire batch of examples at once, for example, when labels can be acquired in parallel. This motivates us to study batch active learning, which iteratively selects batches of $k>1$ examples to be labeled. We propose a novel batch active learning method that leverages the availability of high-quality and efficient sequential active-learning policies by attempting to approximate their behavior when applied for $k$ steps. Specifically, our algorithm first uses Monte-Carlo simulation to estimate the distribution of unlabeled examples selected by a sequential policy over $k$ step executions. The algorithm then attempts to select a set of $k$ examples that best matches this distribution, leading to a combinatorial optimization problem that we term "bounded coordinated matching". While we show this problem is NP-hard in general, we give an efficient greedy solution, which inherits approximation bounds from supermodular minimization theory. Our experimental results on eight benchmark datasets show that the proposed approach is highly effective

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.