Papers
Topics
Authors
Recent
2000 character limit reached

Learning Invariant Representations with Local Transformations (1206.6418v1)

Published 27 Jun 2012 in cs.LG, cs.CV, and stat.ML

Abstract: Learning invariant representations is an important problem in machine learning and pattern recognition. In this paper, we present a novel framework of transformation-invariant feature learning by incorporating linear transformations into the feature learning algorithms. For example, we present the transformation-invariant restricted Boltzmann machine that compactly represents data by its weights and their transformations, which achieves invariance of the feature representation via probabilistic max pooling. In addition, we show that our transformation-invariant feature learning framework can also be extended to other unsupervised learning methods, such as autoencoders or sparse coding. We evaluate our method on several image classification benchmark datasets, such as MNIST variations, CIFAR-10, and STL-10, and show competitive or superior classification performance when compared to the state-of-the-art. Furthermore, our method achieves state-of-the-art performance on phone classification tasks with the TIMIT dataset, which demonstrates wide applicability of our proposed algorithms to other domains.

Citations (187)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.