Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convergence Rates for Differentially Private Statistical Estimation (1206.6395v1)

Published 27 Jun 2012 in cs.LG, cs.CR, and stat.ML

Abstract: Differential privacy is a cryptographically-motivated definition of privacy which has gained significant attention over the past few years. Differentially private solutions enforce privacy by adding random noise to a function computed over the data, and the challenge in designing such algorithms is to control the added noise in order to optimize the privacy-accuracy-sample size tradeoff. This work studies differentially-private statistical estimation, and shows upper and lower bounds on the convergence rates of differentially private approximations to statistical estimators. Our results reveal a formal connection between differential privacy and the notion of Gross Error Sensitivity (GES) in robust statistics, by showing that the convergence rate of any differentially private approximation to an estimator that is accurate over a large class of distributions has to grow with the GES of the estimator. We then provide an upper bound on the convergence rate of a differentially private approximation to an estimator with bounded range and bounded GES. We show that the bounded range condition is necessary if we wish to ensure a strict form of differential privacy.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.