Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bootstrapping Monte Carlo Tree Search with an Imperfect Heuristic (1206.5940v1)

Published 26 Jun 2012 in cs.AI

Abstract: We consider the problem of using a heuristic policy to improve the value approximation by the Upper Confidence Bound applied in Trees (UCT) algorithm in non-adversarial settings such as planning with large-state space Markov Decision Processes. Current improvements to UCT focus on either changing the action selection formula at the internal nodes or the rollout policy at the leaf nodes of the search tree. In this work, we propose to add an auxiliary arm to each of the internal nodes, and always use the heuristic policy to roll out simulations at the auxiliary arms. The method aims to get fast convergence to optimal values at states where the heuristic policy is optimal, while retaining similar approximation as the original UCT in other states. We show that bootstrapping with the proposed method in the new algorithm, UCT-Aux, performs better compared to the original UCT algorithm and its variants in two benchmark experiment settings. We also examine conditions under which UCT-Aux works well.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.