Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed (1206.5780v1)

Published 24 Apr 2012 in cs.NE

Abstract: In this paper, we study the performance of IPOP-saACM-ES and BIPOP-saACM-ES, recently proposed self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution Strategies. Both algorithms were tested using restarts till a total number of function evaluations of $106D$ was reached, where $D$ is the dimension of the function search space. We compared surrogate-assisted algorithms with their surrogate-less versions IPOP-saACM-ES and BIPOP-saACM-ES, two algorithms with one of the best overall performance observed during the BBOB-2009 and BBOB-2010. The comparison shows that the surrogate-assisted versions outperform the original CMA-ES algorithms by a factor from 2 to 4 on 8 out of 24 noiseless benchmark problems, showing the best results among all algorithms of the BBOB-2009 and BBOB-2010 on Ellipsoid, Discus, Bent Cigar, Sharp Ridge and Sum of different powers functions.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.