Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Markov Logic in Infinite Domains (1206.5292v1)

Published 20 Jun 2012 in cs.AI

Abstract: Combining first-order logic and probability has long been a goal of AI. Markov logic (Richardson & Domingos, 2006) accomplishes this by attaching weights to first-order formulas and viewing them as templates for features of Markov networks. Unfortunately, it does not have the full power of first-order logic, because it is only defined for finite domains. This paper extends Markov logic to infinite domains, by casting it in the framework of Gibbs measures (Georgii, 1988). We show that a Markov logic network (MLN) admits a Gibbs measure as long as each ground atom has a finite number of neighbors. Many interesting cases fall in this category. We also show that an MLN admits a unique measure if the weights of its non-unit clauses are small enough. We then examine the structure of the set of consistent measures in the non-unique case. Many important phenomena, including systems with phase transitions, are represented by MLNs with non-unique measures. We relate the problem of satisfiability in first-order logic to the properties of MLN measures, and discuss how Markov logic relates to previous infinite models.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube