Papers
Topics
Authors
Recent
2000 character limit reached

Learning Probabilistic Relational Dynamics for Multiple Tasks (1206.5249v1)

Published 20 Jun 2012 in cs.AI

Abstract: The ways in which an agent's actions affect the world can often be modeled compactly using a set of relational probabilistic planning rules. This paper addresses the problem of learning such rule sets for multiple related tasks. We take a hierarchical Bayesian approach, in which the system learns a prior distribution over rule sets. We present a class of prior distributions parameterized by a rule set prototype that is stochastically modified to produce a task-specific rule set. We also describe a coordinate ascent algorithm that iteratively optimizes the task-specific rule sets and the prior distribution. Experiments using this algorithm show that transferring information from related tasks significantly reduces the amount of training data required to predict action effects in blocks-world domains.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.