Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Symmetry of Information: A Closer Look (1206.5184v1)

Published 22 Jun 2012 in cs.IT and math.IT

Abstract: Symmetry of information establishes a relation between the information that x has about y (denoted I(x : y)) and the information that y has about x (denoted I(y : x)). In classical information theory, the two are exactly equal, but in algorithmical information theory, there is a small excess quantity of information that differentiates the two terms, caused by the necessity of packaging information in a way that makes it accessible to algorithms. It was shown in [Zim11] that in the case of strings with simple complexity (that is the Kolmogorov complexity of their Kolmogorov complexity is small), the relevant information can be packed in a very economical way, which leads to a tighter relation between I(x : y) and I(y : x) than the one provided in the classical symmetry-of-information theorem of Kolmogorov and Levin. We give here a simpler proof of this result, using a suggestion of Alexander Shen. This result implies a van Lambalgen- type theorem for finite strings and plain complexity: If x is c-random and y is c-random relative to x, then xy is O(c)-random. We show that a similar result holds for prefix-free complexity and weak-K-randomness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)