Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multilingual Medical Documents Classification Based on MesH Domain Ontology (1206.4883v1)

Published 21 Jun 2012 in cs.IR

Abstract: This article deals with the semantic Web and ontologies. It addresses the issue of the classification of multilingual Web documents, based on domain ontology. The objective is being able, using a model, to classify documents in different languages. We will try to solve this problematic using two different approaches. The two approaches will have two elementary stages: the creation of the model using machine learning algorithms on a labeled corpus, then the classification of documents after detecting their languages and mapping their terms into the concepts of the language of reference (English). But each one will deal with the multilingualism with a different approach. One supposes the ontology is monolingual, whereas the other considers it multilingual. To show the feasibility and the importance of our work, we implemented it on a domain that attracts nowadays a lot of attention from the data mining community: the biomedical domain. The selected documents are from the biomedical benchmark corpus Ohsumed, and the associated ontology is the thesaurus MeSH (Medical Subject Headings). The main idea in our work is a new document representation, the masterpiece of all good classification, based on concept. The experimental results show that the recommended ideas are promising.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube