Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Additive Functional and Kernel CCA (1206.4669v1)

Published 18 Jun 2012 in cs.LG and stat.ML

Abstract: Canonical Correlation Analysis (CCA) is a classical tool for finding correlations among the components of two random vectors. In recent years, CCA has been widely applied to the analysis of genomic data, where it is common for researchers to perform multiple assays on a single set of patient samples. Recent work has proposed sparse variants of CCA to address the high dimensionality of such data. However, classical and sparse CCA are based on linear models, and are thus limited in their ability to find general correlations. In this paper, we present two approaches to high-dimensional nonparametric CCA, building on recent developments in high-dimensional nonparametric regression. We present estimation procedures for both approaches, and analyze their theoretical properties in the high-dimensional setting. We demonstrate the effectiveness of these procedures in discovering nonlinear correlations via extensive simulations, as well as through experiments with genomic data.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.