Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Max-Margin Nonparametric Latent Feature Models for Link Prediction (1206.4659v1)

Published 18 Jun 2012 in cs.LG and stat.ML

Abstract: We present a max-margin nonparametric latent feature model, which unites the ideas of max-margin learning and Bayesian nonparametrics to discover discriminative latent features for link prediction and automatically infer the unknown latent social dimension. By minimizing a hinge-loss using the linear expectation operator, we can perform posterior inference efficiently without dealing with a highly nonlinear link likelihood function; by using a fully-Bayesian formulation, we can avoid tuning regularization constants. Experimental results on real datasets appear to demonstrate the benefits inherited from max-margin learning and fully-Bayesian nonparametric inference.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)