Papers
Topics
Authors
Recent
2000 character limit reached

Learning Efficient Structured Sparse Models (1206.4649v1)

Published 18 Jun 2012 in cs.LG, cs.CV, and stat.ML

Abstract: We present a comprehensive framework for structured sparse coding and modeling extending the recent ideas of using learnable fast regressors to approximate exact sparse codes. For this purpose, we develop a novel block-coordinate proximal splitting method for the iterative solution of hierarchical sparse coding problems, and show an efficient feed forward architecture derived from its iteration. This architecture faithfully approximates the exact structured sparse codes with a fraction of the complexity of the standard optimization methods. We also show that by using different training objective functions, learnable sparse encoders are no longer restricted to be mere approximants of the exact sparse code for a pre-given dictionary, as in earlier formulations, but can be rather used as full-featured sparse encoders or even modelers. A simple implementation shows several orders of magnitude speedup compared to the state-of-the-art at minimal performance degradation, making the proposed framework suitable for real time and large-scale applications.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.