Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Performance Limits for Distributed Estimation Over LMS Adaptive Networks (1206.3728v1)

Published 17 Jun 2012 in cs.IT, cs.DC, cs.SY, and math.IT

Abstract: In this work we analyze the mean-square performance of different strategies for distributed estimation over least-mean-squares (LMS) adaptive networks. The results highlight some useful properties for distributed adaptation in comparison to fusion-based centralized solutions. The analysis establishes that, by optimizing over the combination weights, diffusion strategies can deliver lower excess-mean-square-error than centralized solutions employing traditional block or incremental LMS strategies. We first study in some detail the situation involving combinations of two adaptive agents and then extend the results to generic N-node ad-hoc networks. In the later case, we establish that, for sufficiently small step-sizes, diffusion strategies can outperform centralized block or incremental LMS strategies by optimizing over left-stochastic combination weighting matrices. The results suggest more efficient ways for organizing and processing data at fusion centers, and present useful adaptive strategies that are able to enhance performance when implemented in a distributed manner.

Citations (140)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.