Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refractor Importance Sampling (1206.3295v1)

Published 13 Jun 2012 in cs.AI

Abstract: In this paper we introduce Refractor Importance Sampling (RIS), an improvement to reduce error variance in Bayesian network importance sampling propagation under evidential reasoning. We prove the existence of a collection of importance functions that are close to the optimal importance function under evidential reasoning. Based on this theoretic result we derive the RIS algorithm. RIS approaches the optimal importance function by applying localized arc changes to minimize the divergence between the evidence-adjusted importance function and the optimal importance function. The validity and performance of RIS is empirically tested with a large setof synthetic Bayesian networks and two real-world networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Haohai Yu (9 papers)
  2. Robert A. van Engelen (2 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.