Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Gradient Estimation by Incorporating Sensor Data (1206.3272v1)

Published 13 Jun 2012 in cs.AI

Abstract: An efficient policy search algorithm should estimate the local gradient of the objective function, with respect to the policy parameters, from as few trials as possible. Whereas most policy search methods estimate this gradient by observing the rewards obtained during policy trials, we show, both theoretically and empirically, that taking into account the sensor data as well gives better gradient estimates and hence faster learning. The reason is that rewards obtained during policy execution vary from trial to trial due to noise in the environment; sensor data, which correlates with the noise, can be used to partially correct for this variation, resulting in an estimatorwith lower variance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.