Papers
Topics
Authors
Recent
2000 character limit reached

Partitioned Linear Programming Approximations for MDPs (1206.3266v1)

Published 13 Jun 2012 in cs.AI

Abstract: Approximate linear programming (ALP) is an efficient approach to solving large factored Markov decision processes (MDPs). The main idea of the method is to approximate the optimal value function by a set of basis functions and optimize their weights by linear programming (LP). This paper proposes a new ALP approximation. Comparing to the standard ALP formulation, we decompose the constraint space into a set of low-dimensional spaces. This structure allows for solving the new LP efficiently. In particular, the constraints of the LP can be satisfied in a compact form without an exponential dependence on the treewidth of ALP constraints. We study both practical and theoretical aspects of the proposed approach. Moreover, we demonstrate its scale-up potential on an MDP with more than 2100 states.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.