Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CORL: A Continuous-state Offset-dynamics Reinforcement Learner (1206.3231v1)

Published 13 Jun 2012 in cs.LG and stat.ML

Abstract: Continuous state spaces and stochastic, switching dynamics characterize a number of rich, realworld domains, such as robot navigation across varying terrain. We describe a reinforcementlearning algorithm for learning in these domains and prove for certain environments the algorithm is probably approximately correct with a sample complexity that scales polynomially with the state-space dimension. Unfortunately, no optimal planning techniques exist in general for such problems; instead we use fitted value iteration to solve the learned MDP, and include the error due to approximate planning in our bounds. Finally, we report an experiment using a robotic car driving over varying terrain to demonstrate that these dynamics representations adequately capture real-world dynamics and that our algorithm can be used to efficiently solve such problems.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.