Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Uncertain and Approximative Knowledge Representation to Reasoning on Classification with a Fuzzy Networks Based System (1206.2347v1)

Published 11 Jun 2012 in cs.AI

Abstract: The approach described here allows to use the fuzzy Object Based Representation of imprecise and uncertain knowledge. This representation has a great practical interest due to the possibility to realize reasoning on classification with a fuzzy semantic network based system. For instance, the distinction between necessary, possible and user classes allows to take into account exceptions that may appear on fuzzy knowledge-base and facilitates integration of user's Objects in the base. This approach describes the theoretical aspects of the architecture of the whole experimental A.I. system we built in order to provide effective on-line assistance to users of new technological systems: the understanding of "how it works" and "how to complete tasks" from queries in quite natural languages. In our model, procedural semantic networks are used to describe the knowledge of an "ideal" expert while fuzzy sets are used both to describe the approximative and uncertain knowledge of novice users in fuzzy semantic networks which intervene to match fuzzy labels of a query with categories from our "ideal" expert.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)