Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recovery of Sparse 1-D Signals from the Magnitudes of their Fourier Transform (1206.1405v1)

Published 7 Jun 2012 in cs.IT, math.IT, and math.OC

Abstract: The problem of signal recovery from the autocorrelation, or equivalently, the magnitudes of the Fourier transform, is of paramount importance in various fields of engineering. In this work, for one-dimensional signals, we give conditions, which when satisfied, allow unique recovery from the autocorrelation with very high probability. In particular, for sparse signals, we develop two non-iterative recovery algorithms. One of them is based on combinatorial analysis, which we prove can recover signals upto sparsity $o(n{1/3})$ with very high probability, and the other is developed using a convex optimization based framework, which numerical simulations suggest can recover signals upto sparsity $o(n{1/2})$ with very high probability.

Citations (115)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.