Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recovery of Sparse 1-D Signals from the Magnitudes of their Fourier Transform (1206.1405v1)

Published 7 Jun 2012 in cs.IT, math.IT, and math.OC

Abstract: The problem of signal recovery from the autocorrelation, or equivalently, the magnitudes of the Fourier transform, is of paramount importance in various fields of engineering. In this work, for one-dimensional signals, we give conditions, which when satisfied, allow unique recovery from the autocorrelation with very high probability. In particular, for sparse signals, we develop two non-iterative recovery algorithms. One of them is based on combinatorial analysis, which we prove can recover signals upto sparsity $o(n{1/3})$ with very high probability, and the other is developed using a convex optimization based framework, which numerical simulations suggest can recover signals upto sparsity $o(n{1/2})$ with very high probability.

Citations (115)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.