Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Shortest Paths in Less Than a Millisecond (1206.1134v1)

Published 6 Jun 2012 in cs.SI, cs.DB, and physics.soc-ph

Abstract: We consider the problem of answering point-to-point shortest path queries on massive social networks. The goal is to answer queries within tens of milliseconds while minimizing the memory requirements. We present a technique that achieves this goal for an extremely large fraction of path queries by exploiting the structure of the social networks. Using evaluations on real-world datasets, we argue that our technique offers a unique trade-off between latency, memory and accuracy. For instance, for the LiveJournal social network (roughly 5 million nodes and 69 million edges), our technique can answer 99.9% of the queries in less than a millisecond. In comparison to storing all pair shortest paths, our technique requires at least 550x less memory; the average query time is roughly 365 microseconds --- 430x faster than the state-of-the-art shortest path algorithm. Furthermore, the relative performance of our technique improves with the size (and density) of the network. For the Orkut social network (3 million nodes and 220 million edges), for instance, our technique is roughly 2588x faster than the state-of-the-art algorithm for computing shortest paths.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.