Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Mantel's Theorem for random graphs (1206.1016v1)

Published 5 Jun 2012 in math.PR, cs.DM, and math.CO

Abstract: For a graph $G$, denote by $t(G)$ (resp. $b(G)$) the maximum size of a triangle-free (resp. bipartite) subgraph of $G$. Of course $t(G) \geq b(G)$ for any $G$, and a classic result of Mantel from 1907 (the first case of Tur\'an's Theorem) says that equality holds for complete graphs. A natural question, first considered by Babai, Simonovits and Spencer about 20 years ago is, when (i.e. for what $p=p(n)$) is the "Erd\H{o}s-R\'enyi" random graph $G=G(n,p)$ likely to satisfy $t(G) = b(G)$? We show that this is true if $p>C n{-1/2} \log{1/2}n $ for a suitable constant $C$, which is best possible up to the value of $C$.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.