Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Pertinent Information retrieval based on Possibilistic Bayesian network : origin and possibilistic perspective (1206.0968v1)

Published 5 Jun 2012 in cs.IR

Abstract: In this paper we present a synthesis of work performed on tow information retrieval models: Bayesian network information retrieval model witch encode (in) dependence relation between terms and possibilistic network information retrieval model witch make use of necessity and possibility measures to represent the fuzziness of pertinence measure. It is known that the use of a general Bayesian network methodology as the basis for an IR system is difficult to tackle. The problem mainly appears because of the large number of variables involved and the computational efforts needed to both determine the relationships between variables and perform the inference processes. To resolve these problems, many models have been proposed such as BNR model. Generally, Bayesian network models doesn't consider the fuzziness of natural language in the relevance measure of a document to a given query and possibilistic models doesn't undertake the dependence relations between terms used to index documents. As a first solution we propose a hybridization of these two models in one that will undertake both the relationship between terms and the intrinsic fuzziness of natural language. We believe that the translation of Bayesian network model from the probabilistic framework to possibilistic one will allow a performance improvement of BNRM.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.