Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Fuzzy Knowledge Representation Based on Possibilistic and Necessary Bayesian Networks (1206.0918v1)

Published 5 Jun 2012 in cs.AI

Abstract: Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge. This paper proposes a framework that combines two disciplines to exploit their own advantages in uncertain and imprecise knowledge representation problems. The framework proposed is a possibilistic logic based one in which Bayesian nodes and their properties are represented by local necessity-valued knowledge base. Data in properties are interpreted as set of valuated formulas. In our contribution possibilistic Bayesian networks have a qualitative part and a quantitative part, represented by local knowledge bases. The general idea is to study how a fusion of these two formalisms would permit representing compact way to solve efficiently problems for knowledge representation. We show how to apply possibility and necessity measures to the problem of knowledge representation with large scale data. On the other hand fuzzification of crisp certainty degrees to fuzzy variables improves the quality of the network and tends to bring smoothness and robustness in the network performance. The general aim is to provide a new approach for decision under uncertainty that combines three methodologies: Bayesian networks certainty distribution and fuzzy logic.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.