Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Binary hidden Markov models and varieties (1206.0500v3)

Published 3 Jun 2012 in math.AG and stat.ML

Abstract: The technological applications of hidden Markov models have been extremely diverse and successful, including natural language processing, gesture recognition, gene sequencing, and Kalman filtering of physical measurements. HMMs are highly non-linear statistical models, and just as linear models are amenable to linear algebraic techniques, non-linear models are amenable to commutative algebra and algebraic geometry. This paper closely examines HMMs in which all the hidden random variables are binary. Its main contributions are (1) a birational parametrization for every such HMM, with an explicit inverse for recovering the hidden parameters in terms of observables, (2) a semialgebraic model membership test for every such HMM, and (3) minimal defining equations for the 4-node fully binary model, comprising 21 quadrics and 29 cubics, which were computed using Grobner bases in the cumulant coordinates of Sturmfels and Zwiernik. The new model parameters in (1) are rationally identifiable in the sense of Sullivant, Garcia-Puente, and Spielvogel, and each model's Zariski closure is therefore a rational projective variety of dimension 5. Grobner basis computations for the model and its graph are found to be considerably faster using these parameters. In the case of two hidden states, item (2) supersedes a previous algorithm of Schonhuth which is only generically defined, and the defining equations (3) yield new invariants for HMMs of all lengths $\geq 4$. Such invariants have been used successfully in model selection problems in phylogenetics, and one can hope for similar applications in the case of HMMs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)