Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Weighted-{$\ell_1$} minimization with multiple weighting sets (1205.6845v1)

Published 30 May 2012 in cs.IT and math.IT

Abstract: In this paper, we study the support recovery conditions of weighted $\ell_1$ minimization for signal reconstruction from compressed sensing measurements when multiple support estimate sets with different accuracy are available. We identify a class of signals for which the recovered vector from $\ell_1$ minimization provides an accurate support estimate. We then derive stability and robustness guarantees for the weighted $\ell_1$ minimization problem with more than one support estimate. We show that applying a smaller weight to support estimate that enjoy higher accuracy improves the recovery conditions compared with the case of a single support estimate and the case with standard, i.e., non-weighted, $\ell_1$ minimization. Our theoretical results are supported by numerical simulations on synthetic signals and real audio signals.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.