Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fuzzy - Rough Feature Selection With Π- Membership Function For Mammogram Classification (1205.4336v2)

Published 19 May 2012 in cs.CV

Abstract: Breast cancer is the second leading cause for death among women and it is diagnosed with the help of mammograms. Oncologists are miserably failed in identifying the micro calcification at the early stage with the help of the mammogram visually. In order to improve the performance of the breast cancer screening, most of the researchers have proposed Computer Aided Diagnosis using image processing. In this study mammograms are preprocessed and features are extracted, then the abnormality is identified through the classification. If all the extracted features are used, most of the cases are misidentified. Hence feature selection procedure is sought. In this paper, Fuzzy-Rough feature selection with {\pi} membership function is proposed. The selected features are used to classify the abnormalities with help of Ant-Miner and Weka tools. The experimental analysis shows that the proposed method improves the mammograms classification accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.