Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Structured Prediction via Coactive Learning (1205.4213v2)

Published 18 May 2012 in cs.LG, cs.AI, and cs.IR

Abstract: We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user. At each step, the system (e.g. search engine) receives a context (e.g. query) and predicts an object (e.g. ranking). The user responds by correcting the system if necessary, providing a slightly improved -- but not necessarily optimal -- object as feedback. We argue that such feedback can often be inferred from observable user behavior, for example, from clicks in web-search. Evaluating predictions by their cardinal utility to the user, we propose efficient learning algorithms that have ${\cal O}(\frac{1}{\sqrt{T}})$ average regret, even though the learning algorithm never observes cardinal utility values as in conventional online learning. We demonstrate the applicability of our model and learning algorithms on a movie recommendation task, as well as ranking for web-search.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pannaga Shivaswamy (5 papers)
  2. Thorsten Joachims (66 papers)
Citations (64)

Summary

We haven't generated a summary for this paper yet.