Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Online Structured Prediction via Coactive Learning (1205.4213v2)

Published 18 May 2012 in cs.LG, cs.AI, and cs.IR

Abstract: We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user. At each step, the system (e.g. search engine) receives a context (e.g. query) and predicts an object (e.g. ranking). The user responds by correcting the system if necessary, providing a slightly improved -- but not necessarily optimal -- object as feedback. We argue that such feedback can often be inferred from observable user behavior, for example, from clicks in web-search. Evaluating predictions by their cardinal utility to the user, we propose efficient learning algorithms that have ${\cal O}(\frac{1}{\sqrt{T}})$ average regret, even though the learning algorithm never observes cardinal utility values as in conventional online learning. We demonstrate the applicability of our model and learning algorithms on a movie recommendation task, as well as ranking for web-search.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.