Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM (1205.4120v1)

Published 18 May 2012 in stat.CO and stat.ML

Abstract: Covariance graphical lasso applies a lasso penalty on the elements of the covariance matrix. This method is useful because it not only produces sparse estimation of covariance matrix but also discovers marginal independence structures by generating zeros in the covariance matrix. We propose and explore two new algorithms for solving the covariance graphical lasso problem. Our new algorithms are based on coordinate descent and ECM. We show that these two algorithms are more attractive than the only existing competing algorithm of Bien and Tibshirani (2011) in terms of simplicity, speed and stability. We also discuss convergence properties of our algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)