Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Social Climber attachment in forming networks produces phase transition in a measure of connectivity (1205.3832v3)

Published 16 May 2012 in physics.soc-ph, cond-mat.dis-nn, and cs.SI

Abstract: Formation and fragmentation of networks is typically studied using percolation theory, but most previous research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant component. This approach does not study the effects of evolving network structure on dynamics that occur at the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal excitations. We introduce and analyze new link-formation rules, called Social Climber (SC) attachment, that may be combined with arbitrary percolation models to produce a previously unstudied phase transition using the largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss implications for controlling dynamics on networks.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.