Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergent message passing algorithms - a unifying view (1205.2625v1)

Published 9 May 2012 in cs.AI and cs.LG

Abstract: Message-passing algorithms have emerged as powerful techniques for approximate inference in graphical models. When these algorithms converge, they can be shown to find local (or sometimes even global) optima of variational formulations to the inference problem. But many of the most popular algorithms are not guaranteed to converge. This has lead to recent interest in convergent message-passing algorithms. In this paper, we present a unified view of convergent message-passing algorithms. We present a simple derivation of an abstract algorithm, tree-consistency bound optimization (TCBO) that is provably convergent in both its sum and max product forms. We then show that many of the existing convergent algorithms are instances of our TCBO algorithm, and obtain novel convergent algorithms "for free" by exchanging maximizations and summations in existing algorithms. In particular, we show that Wainwright's non-convergent sum-product algorithm for tree based variational bounds, is actually convergent with the right update order for the case where trees are monotonic chains.

Citations (129)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.