Papers
Topics
Authors
Recent
2000 character limit reached

Temporal-Difference Networks for Dynamical Systems with Continuous Observations and Actions (1205.2608v1)

Published 9 May 2012 in cs.LG and stat.ML

Abstract: Temporal-difference (TD) networks are a class of predictive state representations that use well-established TD methods to learn models of partially observable dynamical systems. Previous research with TD networks has dealt only with dynamical systems with finite sets of observations and actions. We present an algorithm for learning TD network representations of dynamical systems with continuous observations and actions. Our results show that the algorithm is capable of learning accurate and robust models of several noisy continuous dynamical systems. The algorithm presented here is the first fully incremental method for learning a predictive representation of a continuous dynamical system.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.