Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mixed-mode implementation of PETSc for scalable linear algebra on multi-core processors (1205.2005v2)

Published 9 May 2012 in cs.DC and cs.PF

Abstract: With multi-core processors a ubiquitous building block of modern supercomputers, it is now past time to enable applications to embrace these developments in processor design. To achieve exascale performance, applications will need ways of exploiting the new levels of parallelism that are exposed in modern high-performance computers. A typical approach to this is to use shared-memory programming techniques to best exploit multi-core nodes along with inter-node message passing. In this paper, we describe the addition of OpenMP threaded functionality to the PETSc library. We highlight some issues that hinder good performance of threaded applications on modern processors and describe how to negate them. The OpenMP branch of PETSc was benchmarked using matrices extracted from Fluidity, a CFD application code, which uses the library as its linear solver engine. The overall performance of the mixed-mode implementation is shown to be superior to that of the pure-MPI version.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube