Convex Relaxation for Combinatorial Penalties (1205.1240v1)
Abstract: In this paper, we propose an unifying view of several recently proposed structured sparsity-inducing norms. We consider the situation of a model simultaneously (a) penalized by a set- function de ned on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in Lp-norm. We show that the natural combinatorial optimization problems obtained may be relaxed into convex optimization problems and introduce a notion, the lower combinatorial envelope of a set-function, that characterizes the tightness of our relaxations. We moreover establish links with norms based on latent representations including the latent group Lasso and block-coding, and with norms obtained from submodular functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.