Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Variable Selection for Latent Dirichlet Allocation (1205.1053v1)

Published 4 May 2012 in cs.LG and stat.ML

Abstract: In latent Dirichlet allocation (LDA), topics are multinomial distributions over the entire vocabulary. However, the vocabulary usually contains many words that are not relevant in forming the topics. We adopt a variable selection method widely used in statistical modeling as a dimension reduction tool and combine it with LDA. In this variable selection model for LDA (vsLDA), topics are multinomial distributions over a subset of the vocabulary, and by excluding words that are not informative for finding the latent topic structure of the corpus, vsLDA finds topics that are more robust and discriminative. We compare three models, vsLDA, LDA with symmetric priors, and LDA with asymmetric priors, on heldout likelihood, MCMC chain consistency, and document classification. The performance of vsLDA is better than symmetric LDA for likelihood and classification, better than asymmetric LDA for consistency and classification, and about the same in the other comparisons.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.