Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reed's Conjecture on hole expansions (1205.0731v2)

Published 3 May 2012 in cs.DM

Abstract: In 1998, Reed conjectured that for any graph $G$, $\chi(G) \leq \lceil \frac{\omega(G) + \Delta(G)+1}{2}\rceil$, where $\chi(G)$, $\omega(G)$, and $\Delta(G)$ respectively denote the chromatic number, the clique number and the maximum degree of $G$. In this paper, we study this conjecture for some expansions of graphs, that is graphs obtained with the well known operation composition of graphs. We prove that Reed's Conjecture holds for expansions of bipartite graphs, for expansions of odd holes where the minimum chromatic number of the components is even, when some component of the expansion has chromatic number 1 or when a component induces a bipartite graph. Moreover, Reed's Conjecture holds if all components have the same chromatic number, if the components have chromatic number at most 4 and when the odd hole has length 5. Finally, when $G$ is an odd hole expansion, we prove $\chi(G)\leq\lceil\frac{\omega(G)+\Delta(G)+1}{2}\rceil+1$.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.